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It is argued by reference to the example of quantum electrodynamics that zero-mass bosons are not 
necessarily present in a theory with broken symmetries. 

I. INTRODUCTION 

A THEORY, described by a Lagrangian which is 
invariant under a continuous group of trans

formations, may possess nonsymmetric solutions if the 
vacuum is not invariant, under the group. For example, 
Nambu and Jona-Lasinio1 have shown how a finite 
fermion mass can arise from a formally 75 invariant 
theory. For such theories there exist general proofs 
that zero-mass bosons are necessarily present.2*3 

However, since these proofs involve operators whose 
matrix elements are ill defined in most theories,4 it is 
necessary to look at each theory in detail to see if such 
zero bosons actually arise. This has been done by 
Nambu and Jona-Lasinio for their model. Let us 
review their argument. 

They show that the homogeneous Bethe-Salpeter 
(B.S.) equation for a particle-antiparticle system has a 
zero-mass (q2=0) solution in an approximation which 
is consistent with their equation for the fermion mass. 
Their theory was highly divergent and a cutoff was 
introduced in order to make the theory finite. This 
cutoff had the effect of making the above homogeneous 
Bethe-Salpeter equation into an eigenvalue problem to 
which the Fredholm theory was applicable. The exist
ence of a solution to the homogeneous B.S. equation 
then implied that the corresponding inhomogeneous 75 
vertex equation had no solution for q2=0. For #2=^0, 
the homogeneous B.S. equation had no solution and 
the inhomogeneous pseudoscalar vertex equation had a 
perfectly regular solution. Thus, in this case from the 
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existence of a zero-mass solution to the homogeneous 
B.S. equation, one could conclude that the pseudo-
scalar vertex Tb(q

2) had a pole at £2=0.4 This meant 
that a zero-mass pseudoscalar particle was present. 

In this paper we would like to point out that the part 
of Nambu's argument which shows the existence of a 
zero-mass solution to the homogeneous B.S. equation 
is generalizable to any arbitrary 75 invariant theory. 
However, in this general situation, we cannot further 
conclude (as above) that there exists a zero-mass 
boson. We show this by studying the example of 
quantum electrodynamics with zero bare electron mass.5 

This theory is finite without a cutoff. In this case the 
homogeneous B.S. equation is not of the Fredholm type. 
Therefore, we are unable to carry through the above 
arguments to further conclude that T5(q

2) has a pole 
at q2~0. Instead we find the approximate equation for 
rg(g2) has no solution for any momentum q. Thus 
(in quantum electrodynamics) the existence of a solu
tion to the homogeneous B.S. equation is related to the 
fact that the usually defined r 6 vertex does not exist. 
It tells us nothing about whether zero-mass bosons are 
actually present. 

In Sec. II we present the B.S. equation in a form 
convenient for our discussion. In Sec. I l l , we present 
an argument of Goldstone which explicitly exhibits a 
solution to the exact zero-momentum B.S. equation 
for any 75 invariant theory with symmetry breaking 
solutions. In Sec. IV we show how a certain approxi
mation in quantum electrodynamics provides a simple 
example of Goldstone's general argument. We then 
study in detail the Ts vertex equation in the same 
approximation. 

II. THE BETHE-SALPETER EQUATION 

We will first write the equation for the two-body 
Green's function F (xy; %'yf) in a form appropriate to 
our discussion of the bound states of a fermion anti-

1 K. Johnson, M. Baker, and R, Willey (to be published). 
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fermion system. F(xy; %'yf) is defined as 

F(xy; ^ V ) = - ( ( ^ ( ^ ( / ^ ( ^ ( x O W e ^ y ^ ^ ) 
+G(xy)G(y'x'), (II . l) 

where 

e (x,yf,y,x') = e (xyf) e (xy) e {%%') e {yry) e (y'x') e {yx'), 

e(#y)=(#o—yo)/|#o—3>ol • 

G(xy) is the one-particle Green's function defined as 

G(xy) = imx)$(y))+)e(xy). (II.2) 

G(xy) satisfies the equation 

{ 7 ^ + 3 f [ G G } G = l , (IL3) 

where the mass operator MEG]] is a functional of G 
which is determined by the Lagrangian for the system 
under consideration. M is originally given explicitly in 
terms of not only G but also of higher order Green's 
functions which in turn are related to G by further 
equations. The solutions of these equations in terms of 
G then allows us to express i f as a functional of G 
alone. G is then determined by solving Eq. (II.3). 
Usually we can only construct the perturbation expan
sion of M[GT\. In this case M[_G~] can be represented by 
the sum of all proper self-energy diagrams containing 
no fermion self-energy insertions. In each diagram an 
internal fermion line represents the full Green's function 
G, while all vertices and other internal lines represent 
bare vertices and propagators. 

In the Appendix we show that F satisfies the 
Schwinger,6 Bethe-Salpeter7 integral equation 

F(xy} x'y') = G(xx')G(yy')+ f i 4 # V 4 £ W G ( s £ ) 

X / ( & ; £ V ) * t t V : * ' / ) G ( w ) , (IL4) 

where the interaction operator I is given as a functional 
of G by the equation8 

Ifoi £ V ) = -*M£to; G] /«Gt tV) . (H.5) 

Equation (II.4) then becomes an explicit equation for 
F when use if made of Eq. (II.3) to determine G. Of 
course G must be left arbitrary until after the func
tional differentiation of (IL5)"to determine / is carried 
out. In momentum space, Eq. (II.4) becomes 

F(p,q; K)=frr)W(p-q)G(p+iK)G(p-hK) 

B A K E R , J O H N S O N , A N D L E E 

where 

+G(p+ mj -I(p,s;K) 
(2TT)4 

XF(p,s;K)G(fi-iK), (IL6) 

6 J. Schwinger, Proc. Natl. Acad. Sci. 37, 452, 456 (1951). 
7 E. E. Salpeter and H. A. Bethe, Phys. Rev. 87, 1232 (1951). 
8 This result has also been noted by G. Baym, Phys. Letters 1, 

241 (1962) in the context of many-body problems. 

G(xx') -
d*p 

G(p)e^ (x—xf) 

F(xy ;x'y') = J 

(2TT)4 

d*K d*p d*q 
F(p,q-K) 

(2TT)4 (2TT)4 (2TT)4 

Xexp{K-lh(x+y)-i(x'+?)l 

+P'(x-y)-q(x'-y')} (H.7) 

and likewise for / . 
If there exists a bound state of a fermion-antifermion 

system of mass K2=—MB2J it can be shown that9 

F(p,q',K) 
f(p,K)V(q,K) 

K*->-MB> K2+MI 

where \(/(p,K) satisfies the homogeneous Bethe-Salpeter 
equation 

r dAs 
+(p,K) = G(p+iK) -—ifasiK) 

J (2TT)4 

XHs,K)G(p-iK), (IL8) 

with K2= —MB2- Whether or not the existence of a 
solution to Eq. (II.8) implies that the theory contains 
a bound state depends upon the detailed nature of Eq. 
(II.8).10 This will be discussed in Sec. IV with reference 
to the case of quantum electrodynamics. 

III. SOLUTION OF THE B.S. EQUATION IN A 
SYMMETRY BREAKING THEORY11 

We assume our theory is described a Lagrangian £ 
which is invariant under the 75 gauge transformation 

We write 

^ _ > ^ 7 5 0 / 2 ^ 

G(p) = G1(p
2)+ypG2(p2). 

(III . l) 

(III.2) 

Now if the vacuum is invariant under the unitary 
operator which induces the transformation of Eq. 
(III . l ) , then it follows that 

G(p) = eWVGWeWi*, (III.3) 

from which we conclude 

G!(p2) = 0. (III.4a) 

9 See, for instance, S. Mandelstam, Proc. Roy. Soc. (London) 
237, 496 (1956). 

10 For example, when the Fredholm theory is applicable to Eq. 
(II.6), the existence of a solution to Eq. (II.8) implies a bound 
state. Nambu's model (Ref. 1) is of this type due to the cutoff 
procedure used. 

11 In this section, we make use of an argument originally due to 
J. Goldstone (private communication to M. Baker). We wish to 
thank Dr. J. Goldstone for communicating the argument of this 
section to one of us. 
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If the vacuum is not invariant then Eq. (II.3) may 
have a solution G for which 

G1(p
2)^0. (III.4b) 

In the following discussion we allow for either 
possibility to occur. However, we assume that M[_G~] 
is given by its usual functional expansion in terms of G 
(or by any other approximation which preserves the 
75 symmetry of the perturbation expansion). I t then 
follows 

^ [ ^ 7 5 0 / 2 ^ 7 5 0 / 2 ] = e-Wi2M[Qy-iyi9l2 # (HI .5 ) 

The differential version of Eq. (III.5) yields; 

{y^M} = - (8M/8G){y5,G) , (III.6) 

where {A,B}=AB+BA. 
Noting that 

{yhM} = G~^{y5jG}G~\ 

we write Eq. (III.6) in coordinate space 

r 8M{x'y') 
{y^G{xy)) = - / dAxfdydA^rjG(xxr) 

X{y*Mto)}G(y'y) . (III.7) 

Transforming Eq. (III. 7) into momentum space and 
using (II.5) we obtain 

{yhG{p)) = G(p) /—-I(p,q;0){y,,G(q)}G(p) (IIL8a) 
J 27T * 

or 

{y5,M(p)} = 
d4q 

•I(p,q;Q)G(q) 

X{y*,M(q)}G(q). (IIL8b) 

Since {y5,G(p)} = 2y5Gi(p2), Eqs. (III.8) are nontrivial 
only if Gi(p2)^0. In that case we conclude that 

* & 0 ) = 75Gi(^) (III.9) 

is solution of the homogeneous Bethe-Salpeter Eq. 
(II.8) f o r iT=0 . 

In all cases that we are interested in Eq. (II.8) can 
be transformed into an equation in the Euclidean 
space.12 This transformation will be carried out in 
Sec. IV in the case of quantum electrodynamics. If we 
assume this can be done, then it follows that Eq. 
(III.9) is also a solution of Eq. (II.8) when iT2=0.12 

However, this is all that can be concluded from the 
75 invariance of our theory on the basis of general 
arguments. In Nambu's model, from the existence of a 
solution of Eq. (II.8) for K2=0, one could conclude 

12 While a pseudoscalar solution to Eq. (II.8) for K2 — 0 satisfies 
Eq. (II.8) for K = 0, the converse is not necessarily true, unless, 
for example, Wick's rotation of the ^o-contour is possible [G. C. 
Wick, Phys. Rev. 96, 1124 (1954)]. A solution which satisfies 
Eq. (II.8) for K = 0, but not for i£2 = 0, |K| =iTo^O would 
represent a "spurion" wave function, transforming like the 
vacuum under the Lorentz transformations. We are grateful to 
Professor O. W. Greenberg and Professor A. Wightman for point
ing out this possibility. 

that the theory contained a zero-mass pseudoscalar 
boson. In the next section we shall show that this is not 
the case for quantum electrodynamics. 

IV. QUANTUM ELECTRODYNAMICS 

We now study the example of quantum electro
dynamics with zero-bare electron mass5 in the approxi
mation where M is given by13 

M[j>\ \G"] = Wl 

with 

d±q 
5>»(p-qh'lG(qh' (IV. 1) 

£>M=s(gnp-qpqr/ql)(qt-ie)~~1-

Inserting Eq. (IV. 1) into Eq. (II.3) we get an approxi
mate integral equation for G: 

r d*q 
Gipy^y-p+ieo2 ^v(p-q)y»G{q)Y. (IV.2) 

J ( 2 T T ) 4 

I t is argued in Ref. 5 that Eq. (IV.2) gives the asymp
totic behavior of G{p) for large p of the full theory. 
Now as most of the discussion of this section depends 
only upon the asymptotic properties of G(p), some of the 
resulting conclusions may be valid independent of the 
particular approximation of Eq. (IV. 1). 

In order to avoid an infrared divergence in Eq. 
(IV.2), we must give the photon a small mass. This will 
not effect any of the asymptotic properties of Eq. 
(IV.2), but will only modify it in the small p region 
where Eq. (IV.2) is not expected to be a good approxi
mation to the full theory. 

We now can break up Eq. (IV.2) into two coupled 
equations for Gi(p2) and G2(p

2) 

G2(p
2)yp 

GHp2)+P2Gz2{p2) 
d\ 

(M 
Gi(p2) 

r d^ 
= y-p+ie0

2 ^(p-q)y»G2(q
2)yqy», (IV.3a) 

J (2TT)4 

= *V f -^-^(p-qh'G^h*. (IV.3b) 
J (2TY 

The condition that electron has finite mass m requires 
that 

G(py (IV.4) 

In Ref. 5, finite solutions of Eq. (IV.2) subject to 
condition (IV.4) have been found for any value of 

13 In addition to Eq. (IV. 1) there is a second contribution to M 
which is linear in G. This is the diagram where a photon is emitted 
from the electron and gets absorbed in a closed loop ("tadpole" 
diagram). Such a term of course vanished in electrodynamics 
(cf., Ref. 1). However, when differentiated according to Eq. 
(II.5) it produces the annihilation graph contribution to / . We 
have omitted this term in / since it does not contribute anything 
to the pseudoscalar wave function or vertex. 
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m^O. The value of m just serves as a scale for the 
solution. Asymptotically the solution behaves like 

lim GO)"1=y -p+Qtp-w-w^l. (IV.5) 
p-+co 

From the discussion of Sec. I l l we should expect that 
Gx(p

2)y5 should be the solution of the K=0 B.S. 
equation with the interaction operator / calculated 
from (IV. 1) according to Eq. (II.5). In this approxi
mation Eq. (II.8) becomes 

*(p,K)=-ieo2G(p+iK) 

d*s 

(M 

r d*s 
x - — ^ ( £ - S ) Y V M 0 Y ^ - P 0 . (IV-6) 

J 2TT
 4 

If we now put K=0 in Eq. (IV.6) and set f(pfl) 
— ybG\{p2) we get back precisely Eq. (IV.3b). 

This example should give us a clear picture of what is 
happening in the general situation described by Eq. 
(III.8a). There, by virtue of the 75, invariance Eq. 
(III.8a) reduces to an equation for Gi(p2) which is 
automatically satisfied if G is a solution of Eq. (II.3). 
Thus, Eq. (III.8a) can be understood as being just 
an alternate way of writing the homogeneous part of 
Eq. (II.3) in a 75 invariant theory. This is all that we can 
conclude on grounds of the 75 invariances alone. 

We shall now show that the existence of a solution 
to the homogeneous Eq. (IV.6) for K—0 has nothing 
to do with possible presence of massless pseudoscalar 
mesons. Such mesons would produce poles not only 
in F, but also in the T5 vertex operator which in the 
approximation (IV. 1), satisfies the inhomogeneous 
equation 

r*(p+q9 p)=ys—ie<!4 f d"Pr 

J (2TT)4 

The homogeneous version of Eq. (IV.7) with a possible 
solution T5

H(p+q, p) is identical to (IV.6) with the 
identification 

G(p+q)T5*(p+q, p)G(p) = t(p+q/2;q). (IV.8) 

Therefore, the existence of a solution to the homoge
neous B.S. Eq. (IV.6) can equivalently be considered 
as a necessary condition for the existence of a pole in 
T5(p+q, p). Since we have explicitly constructed a 
solution to Eq. (IV.6) for K=Q or q=0, there is a 
possibility that T5(p+q, p) has a pole at q2=0. We will 
show below that this does not happen. Instead we shall 
show without recourse to perturbation theory that 
the T5 vertex does not exist for any q in the approxi
mation (IV. 7). To do this we rewrite Eq. (IV. 7) in the 
following way: 

T*(p+q,p) = l6(p+q,p)-ie<i •I ( 2 T > 
•S>l»(p-s)y"G(s) 

where 
r d*s 

Is(p+q,p) = ys-ieo2 ~-—^v(ps)y" 
J (2TT)4 

X[G(H-g)-G(*)]r5(H-<z, s)G(s)y\ (IV.8b) 

Let us suppose that a solution of Eq. (IV.7) for 
Ttip+q, q) exists for a particular value of q. Then 
F&(p'+q, p') must fall off rapidly enough for large pf 

to ensure the convergence of the integral in Eq. (IV.7). 
But if this is so, then the integral on the right-
hand side of Eq. (IV.8b) converges so rapidly that 
Ih{p-\~q, p) —> 75 as p —» 00. We will show below that if 

h(p+q,p)-+y& as £->co, (IV.9) 

then Eq. (IV.8a) has no solutions. Thus, the original 
assumption that Eq. (IV.7) has a solution leads to a 
contradiction. 

In order to show that Eq. (IV.8a), has no solutions 
if 75 behaves according to (IV.9), it will be sufficient to 
study the high p limit of Eq. (IV.8a). We can then 
neglect the photon mass which is present in £>nr(p—pf)> 
We write 

h(p+q, p) = yJ(p\ q\ p-q), (IV.10) 
where 

I(P\q\p-q)-*h as £->«>. (IV. 11) 

Other invariants occur in I&, but they do not effect the 
high p limit of Eq. (IV.8a). We set 

T*(P+q, P) = ysT(p\ q\ p-q). (IV. 12) 

Equation (IV.8a) then becomes 

?(P\q\p-q) 
d*s T(s2,q2,S'q) -I(p\q\P'q) 

J (2TT)4 (2TT)4 (p-s)2-ie 

X[GiV)+* 2 C2V)] . (IV.13) 
We can analytically continue (IV.13) to the Euclidean 

region p2>0, q2>0, -l<cos$=(p-q/\p\\q\)<l. We 
then expand T(p2, q2, p-q) in terms of the Tschebyscheff 
polynomials14 C„(cos0): 

Cn (cos0) = [sin (n+ l)0/sin0]. (IV. 14) 

W q\ P-q)- E C»(cos0)rn(pV). (IV.IS) 

Equation (IV.13) then becomes 

Tn{ftf) = In(ftf) -I fdp'p" 
87T2(«+l)l^" 

+P n r wr* 
JP p,n+i 

iGt(p'*)+p'2Gi{m 

xr„foV)J, (iv.i6) 

XT&(s+q, s)G(s)Y, (IV.8a) 
14 See, for example, M. Baker and I. Muzinich, Phys. Rev. 132, 

2291 (1963). 
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where 
2 /•* 

In(p\(?)=- \ d6 sm2dCn(cosd)I(p2,q\pq cosd). (IV. 17) 
T Jo 

Now according to Eq. (IV.4) 

P2lG1
2{p2)+p2G<?(p2)~]-*l, as p->oo. (IV.18) 

Also, from Eqs. (IV. 11) and (IV.17), we find 

lim In(p\q2) = Snlo. (IV.19) 

Hence, (IV.17) becomes in the limit of large p 

Tn(p2,q2)~8n,0+„ , J — / dpfp'^Tn(p'2
iq

2) 

20) 

87r2(^+l)Un+2« 

Equation (IV.20) is readily converted into a second-
order homogeneous equation with the general solution 

\imTn(p2,q2) = C1p-1+^n+^2-Za^^112 

p—>oo 
- } - C 2 A - l - [ ( n + l ) 2 - 3 a o / i r ] l / 2 ? (IV.21) 

where ao=eo2/47r. 
The 5n,0 term in Eq. (IV.20) did not contribute to 

the derived differential equation. I t does impose a 
boundary condition upon the solution (IV.21) which is 
clearly not satisfied for the n=0 equation. For when 
(IV.21) is substituted into (IV.20), the left-hand side 
vanishes for large p for all q2 while the left-hand side 
approaches 5n>o. Hence, Eq. (IV. 16) has no solution for 
n=0. For n^O there is a solution of the asymptotic 
Eq. (IV.20) for all q\ 

Using Eq. (IV. 14) we then conclude that Eq. (IV. 13) 
has no solution if / —> 1 as p —>°o. Hence, there are no 
solution to our original Eq. (IV.7) for any q. One might 
have argued that this result is obvious since the 
perturbation expansion of Eq. (IV.7) leads to divergent 
integrals. However, if one had restricted himself to 
using perturbation theory, one would also conclude that 
there were no solutions to (IV.3b), i.e., Gi(p2) = 0. 
I t is therefore essential to carry out arguments without 
recourse to perturbation theory. To repeat: We have 
obtained a symmetry breaking solution Gi(^ 2 )^0 
without necessarily having a zero-mass pseudoscalar 
boson in the same approximation. 

V. CONCLUSION 

We have explicitly exhibited a solution to the zero-
momentum homogeneous Bethe-Salpeter equation for 
a theory with a broken invariance. In the case of 
quantum electrodynamics the existence of this solution 
is symptomatic not of the presence of zero-mass 

particles but rather of the nonexistence of the usually 
defined vertex operator. We conclude that in order to 
determine whether zero-mass particles are actually 
present in any theory with a broken symmetry, one 
must investigate that theory in detail. In particular, 
the distinction between theories which are finite without 
cutoff and those which are cutoff dependent is essential. 
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APPENDIX 

In order to derive Eq. (II.5), it is convenient to 
introduce external sources rj and rj which anticommute 
with themselves and all fermion operators. In the 
presence of such sources the Lagrangian is 

£ C * , ^ ] = £ (* )+ i&(*)^ (* ) ]+*C^(*) , i ? (* ) ] , (Al) 

where £(x) is the Lagrangian in the absence of sources. 
If we define the one-particle Green's function in the 

presence of sources as 

G(**,) = *X(^(*)#(*'))+>«e(«*0/<0|0>ri. (A2) 

Then F(xy; x'y') of Eq. (II. 1) can be expressed as 

&G(xy) 
F(xy,x'y') = i-

8fj(y')dr,(x') 
(A3) 

17=»7=0 

Now we define the mass operator M in the presence of 
external source by the equation 

G= (y-p+M^+iiy-p+My^rjiyp+M)-1. (A4) 

[The second term in (A4) represents the disconnected 
diagrams.] From Eqs. (A3) and (A4) we get 

F = GG-iG(82M/8r}8rJ)ir=rv=0G. (A5) 

If now M is expressed in terms of G as discussed in I I , 
the dependence of M on TJ and rj can be expressed 
completely by its dependence upon G. Thus, 

82M\ /8M\82G\ 

8rj8ri i ^^=0 V 8G /8rj8rj I ^ ^ 0 

whence (A5) becomes 

F=GG-G(8M/8G)FG, 

which is the desired results Eqs. (II.4) and (II.5) 

(A6) 

(A7) 


